
NEW ELEVETOR® / TYPICAL CALCULATION

inite-element modelling for a plot of land 16.82 meters long and 7 meters deep, of which 6.30 m are soft clay and 0.70 m of compacted pozzolana and lapillo.

The simulated structure was assumed to be made by a layer of lean mix 12 cm thickness, **NEW ELEVETOR**® system

95 cm height and a slab 5 cm thickness.

LOAD TABLE for NEW ELEVETOR® H= 120 cm

TYPE OF LOAD	Overload kg/m²	Min. slab thickness cm	Lean mix cm	Pressure on the scree kg/cm²	Screed thickness cm	Pressure on the soil kg/cm²	Rebar diameter mm	Rebar mesh cm x cm
RESIDENTIAL	1,000	4	0		0	3.44	6	20 x 20
			5		0	1.49		
			10		0	0.82		
			5	1.49	10	0.52		
	1,800	5	0		0	5.68	6	20 x 20
			5		0	2.45		
			10		0	1.36		
			5	2.45	10	0.86		
	5,000	7	10	3.48	25	0.67	6	20 x 20
INDUSTRIAL	10,000	10	15	4.30	30	0.87	8	20 x 20

NEW ELEVETOR® / PROJECT COST ANALYSIS

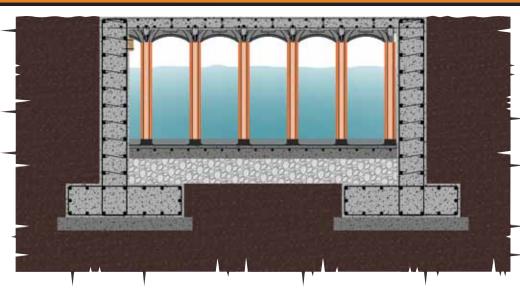
No.	BILL OF MATERIAL	UNIT/MEASURE	QUANTITY	PRICE	TOTAL AMOUNT
1	NEW ELEVETOR® formwork	m ²	1		
2	ø 125 mm tube*	No./m ²	3		
3	BASE NEW ELEVETOR® footing grid	No./m ²	3		
4	Installation of NEW ELEVETOR® system	hours/m ²	0.05		
5	Rebar mesh ø 6 20x20 (cost of material and labour)	kg/m ²	2.328		
6	Concrete class Rck 250 to fill the tubes (cost of material and labour)	m³/m²			
7	Concrete class Rck 250 to fill the formwork (material and labour)	m ³ /m ²			
8	Concrete class Rck 250 for the floor slab thickness (material and labour)	m ³ /m ²			
Total cost €/m²					

^{*}Supply of the tubes ø 125 mm can be discussed at the time of order.

NEW ELEVETOR® H=15 cm DATA

DIMENSION cm	2/ 2		PALLET HEIGHT m	No. OF UNITS/ PALLET	QUANTITY m ²
58 X 58	15	0.030	2.5	225	75

The quantity of concrete to fill the pillars is equal to 0.037 m³/m² per meter height.


Concrete consumption calculation:

The concrete consumption for each square meter of NEW ELEVETOR® is: 0,037 X NEW ELEVETOR® system height in meters - 0,15 = m³/m² concrete consumption

Example for an elevation of 2 meters:

Requires: Base **NEW ELEVETOR®** + PVC tube dia. 125 mm 182.5 cm lenght + **NEW ELEVETOR®** H 15 Concrete consumption = $(0.037 \times 1.85) + 0.030 = 0.098 \text{ m}^3/\text{m}^2$

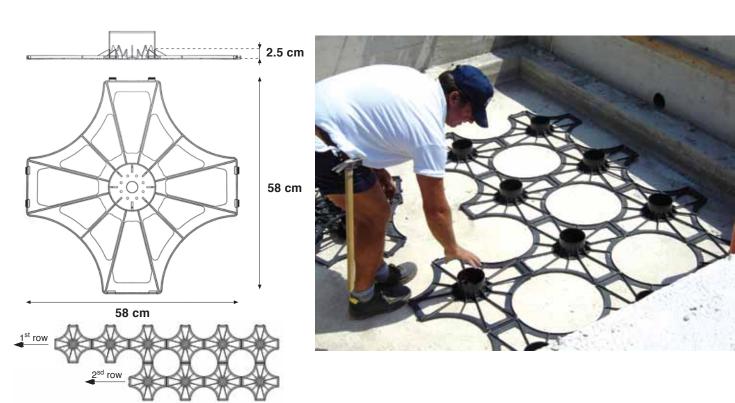
NEW ELEVETOR® SYSTEM

Stormwater management systems for both residential and industrial use can be made using **NEW ELEVETOR**®. Tanks can be built for temporary stormwater storage and attenuation, or permanent storage and reuse. The **NEW ELEVETOR®** system allows to build tanks of any shape and up to 2 meters depth without using cranes or heavy-lifting equipment.

GEOPLAST S.p.A.

35010 Grantorto PD - Italia - Via Martiri della Libertà, 6/8 tel +39 049 9490289 - fax +39 049 9494028 e-mail: geoplast@geoplast.it - www.geoplast.it

The formwork for ventilated foundations for residential and industrial buildings from 70 to 250 cm

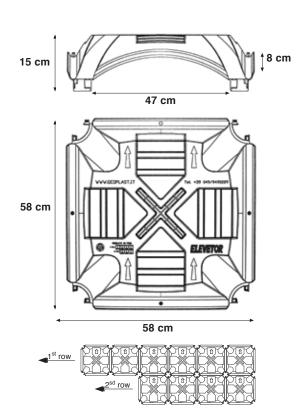

^{**}Place Ø 8 mm reinforcement bars within the tubes that are part of the **NEW ELEVETOR®** system. These inserts must be joined to the rebar mesh used to reinforce the slab, and should be long enough to reach the base of the tube.

NEW ELEVETOR® / USE AND CHARACTERISTICS ■ Create ventilated foundations of any height ■ The formwork is treadable before pouring ■ High load-bearing capacity It can be laid on the subgrade without lean mix

BASE NEW ELEVETOR® / ADVANTAGES AND CHARACTERISTICS

BASE NEW ELEVETOR® IS AN ELEMENT IN RECYCLED POLYPROPYLENE THAT GUARANTEES AN EASY AND QUICK INSTALLATION OF THE PVC TUBES SUPPORTING THE NEW ELEVETOR SYSTEM. INSTALLATION IS PRECISE AND TUBES REMAIN PERFECTLY VERTICAL.

JICK AND EASY SYSTEM



NEW ELEVETOR® / USE AND CHARACTERISTICS

NEW ELEVETOR® FORMWORK / ADVANTAGES AND CHARACTERISTICS

NEW ELEVETOR® IS AN INNOVATIVE SYSTEM WITH DIMENSIONS 58X58 H 15 CM THAT CREATES A CRAWL SPACE AND ALLOW INSTALLATIONS UNDERNEATH REDUCING CONSIDERABLY CONCRETE CONSUMPTION AND INSTALLATION TIME. THE CONCRETE CONSUMPTION FLUSH WITH THE TOP LAYER IS 0.030 m³/m², WHILE THE AMOUNT OF CONCRETE NECESSARY TO FILL THE PILLARS IS 0.037 m³/m² PER LINEAR METER OF HEIGHT.

NEW ELEVETOR® / HOW TO INSTALL

- Installation surface: cover the subgrade with lean mix to create an even surface for NEW ELEVETOR®. Lean mix thickness to spec;
- Installation: place the NEW ELEVETOR® system made by GEOPLAST S.p.A., made by polypropylene formworks size 58 x 58 x h15 cm, joined with tubes Ø 125 mm of length as by project specification, with BASE NEW ELEVETOR® footing grid, assembled before the concrete pour:
- 1. Lay the BASE NEW ELEVETOR® footing grid (58 x 58 x h2.5 cm): it is recommended to place the parts from right to left and from top to bottom.
- 2. Fit tubes into each cup of the footing grid. The tubes are cut to the length suitable to achieve the specified height of **NEW ELEVETOR**® (from 70 to 200 cm)
- 3. Place the **NEW ELEVETOR**® FORMWORK (58 x 58 x h15): the operation is performed attaching the parts to the tubes from the right-hand side to the left, and from top to bottom, always keeping the printed arrow upwards.
- 4. The Grid + Tube + Formwork assembly guarantees a perfect perpendicularity of the pillars within the foundation.
- 5. Place the specified rebar mesh over the surface of the **NEW ELEVETOR**® system (ref. to load table).
- 6. Place ø 8 mm reinforcement bars within the tubes that are part of the **NEW ELEVETOR®** system. These inserts must be joined to the rebar mesh used to reinforce the slab, and should be long enough to reach the base of the tube.
- 7. Slab pour: use a Rck 250 kg/cm² concrete to fill the tubes and the formwork, cover the rebar mesh and reach the designed slab thickness.

